
© 2015

Real world computer security
Információ biztonság,

vírusfertőzések

Boldizsár Bencsáth
(and Levente Buttyán)

|

Aurora experiment

 https://www.youtube.com/watch?v=fJyWngDco3g
 Cyber-phisical attack test
 Code can make physical damage
 https://www.youtube.com/watch?v=7g0pi4J8auQ

Malware 1 2/36

https://www.youtube.com/watch?v=fJyWngDco3g
https://www.youtube.com/watch?v=7g0pi4J8auQ

|

Example: Stuxnet

 a computer worm first discovered in July 2010
 designed to physically destroy uranium centrifuges in the

Natanz enrichment facility in Iran
 infected computers running Windows and spread by

– infecting removable drives
– copying itself over the network using a variety of means
– copying itself to Step 7 projects (runs automatically when project is

opened)

 if not in the target environment, it did nothing
 once inside the target environment, it reprogramed PLCs

controlling the rotation speed of the uranium centrifuges
 manipulation of the rotation speed led to physical damage

– hundreds of centrifuges were destroyed

Malware 3/110

|

Stuxnet – Special features

 very specific target (nuclear facility)
 objective was physical destruction by logical means (sabotage)
 worm-like spreading thousands of infected machines
 yet, remained uncovered for months (years?)

– time was enough to reach its target
– careful testing during development to avoid anomalies on infected machines

 used multiple zero-day exploits and a digitally signed driver
– signature was created with the possibly compromised key of a Taiwanese

hardware manufacturer
 used advanced privilege escalation, code injection, and rootkit

techniques, as well as a peer-to-peer update mechanism
 first known malware that contained also a PLC rootkit
 required a testbed similar to the target environment

– who has a testbed with uranium centrifuges?
 state sponsored attackers behind

Malware 4/110

|

 PLC devices are loaded with blocks of code and data by a
programming device (engineering workstation running a PLC
management software on Windows)

 PLC block exchange between
the programming device and
the PLC is handled by a DLL
(s7otbxdx.dll)

 Stuxnet replaces this DLL
with its own copy
– can monitor PLC blocks being

written to and read from the
PLC

– can infect a PLC by inserting
its own blocks and replacing
or infecting existing blocks

– can mask the fact that a PLC is
infected

Stuxnet – PLC attack

Malware

original DLL
renamed

5/106

|

DPRK

 Stuxnet kernel drivers

Malware 1 6/36

File name Size (bytes) Compilation
date

Where and
when it was

used

Digital
signature/signin

g date

Mrxcls.sys 19840 01.01.2009 Stuxnet
(22.06.2009) No

Mrxcls.sys 26616 01.01.2009
Stuxnet

(01.03.2010/14.
04.2010)

Realtek,
25.01.2010

Mrxnet.sys 17400 25.01.2010
Stuxnet

(01.03.2010/14.
04.2010)

Realtek,
25.01.2010

Jmidebs.sys 25552 14.07.2010 Presumably,
Stuxnet

Jmicron,
unknown

|

DPRK – North Korea

 Dark Hotel: A DPRK related APT
 Nuclear program: many unsuccessful rocket experiments …

strange
 Stuxnet kernel driver: maybe it is not related to Stuxnet, but to

DPRK somehow?

Malware 1 7/36

|

Other examples for targeted attacks

Malware

https://apt.securelist.com/

8/110

|

The Duqu font vulnerability

 Font parsing problem
 Kernel space
 All windows versions (nearly)
 Bitmap fonts – composite bitmap offset
 Glyph routines

 Font dump
 Write-up
 Repro font
 After fix, Microsoft ran a project to find cloned code with same

problem

Malware 1 9/36

|

Duqu dropper – the idea

 Duqu dropper was a .doc file
 With embedded font
 Font exploited Windows kernel vulnerability (CVE-2011-3402)
 Creating such exploit needs lots of effort, even understanding it needs

much work
 Shell code runs then at kernel level – designing it needs precise work,

much effort
 (It took a long time for exploit pack creators to incorporate Duqu exploit)
 Idea: Let’s change only user space components from the dropper
 Duqu exploit and kernel level parts will do the hard work for us

|

Dropper structure

Word document

Embedded font file “Dexter” with exploit

Character string that uses Dexter
“:)” in size 4

|

Dropper font file logical structure

Exploit stage – gaining control

Stage 0 – decrypting Stage 1 (tiny code)

Stage 1 – initializations and decompression Stage 2

Stage 2 – Kernel driver to load User Space stage 1

User Space stage 1 – injects Stage 2

User Space stage 2 – installs malware

Main PNF (compressed with Duqu LZO-like compression)

compressed

kernel space

replaced

|

Major problems, work to be done

 Kernel level parts are not yet documented in detail publicly
 Decrypting parts and analysis of kernel level code was needed
 Compression used in kernel level is not documented
 User space stages were also not documented in detail

|

How to perform

 Let all kernel level stuff as it is (from exploit to stage 2)
 Let user space stage 1 to inject our malware
 Replace User space stage 2 and PNF payload

 First we had to decipher encrypted parts and analyze code
 Kernel level parts are not detailed much in public reports
 Problem: Some parts are compressed by stage 1 kernel code
 Compression is not documented by public reports either
 The code contains the decompression routine. We cannot

compress our own payload as we need the proper compression
routine (or a workaround to turn off decompression at all)

Decompressor in Duqu dropper

Duqu dropper decompressor LZMA at read.pudn.com/downloads94/sourcecode/zip/372835/Source/lzma_depack.inc__.htm

seg000:000011C0 000 lea eax, [ebx+eax*4]
seg000:000011C3 000 mov ecx, eax
seg000:000011C5 000 mov eax, [ecx]
seg000:000011C7 000 mov edx, [ebp-0Ch]
seg000:000011CA 000 shr edx, 0Bh ;
seg000:000011CD 000 mul edx
seg000:000011CF 000 cmp eax, [ebp-10h]
seg000:000011D2 000 jbe short loc_11FC
seg000:000011D4 000 mov [ebp-0Ch], eax
seg000:000011D7 000 mov edx, 800h
seg000:000011DC 000 sub edx, [ecx] ;
seg000:000011DE 000 shr edx, 5 ;
seg000:000011E1 000 add [ecx], edx

@loc_401320:
mov ecx,[edi]
mov edx,eax
shr edx,0Bh
imul edx,ecx
cmp [ebp+0Ch],edx
jnb @loc_40136C
mov esi,[ebp-10h]
mov eax,edx
mov edx,800h
sub edx,ecx
shr edx,5
add edx,ecx
xor ecx,ecx

|

Duqu dropper compression

 We found very similar code chunks in LZMA
 However, we could not find an exactly same implementation
 We ran Duqu decompressor to decompress payload
 Re-compressed with LZMA to prove that it is LZMA
 We got back the original bye stream with command line:
lzma.exe e Zd Zdc -a1 -d16
 Dictionary size is in Duqu between d15-17, default of lzma.exe

is d22

|

Duqu dropper LZMA verified

|

Further steps

 We made our own malware DLL with four exports, Duqu will
call them

 Replaced User Space Stage 2 code with that
 Recompressed the parts “Kernel space stage 2” – end of file and

inserted raw compressed block into dropper
 Re-wrote compressed part header (size of compressed and

uncompressed part in 32-bit integers)
 Modified activation date limits (not documented)
 All done, ready to test

|

Dropper time limit

 It was known that User Space stage 2 has some date limit

 However we already knew that there should be another
checking as dropper reproduction only worked withing much
tight date points

|

Demo

 Video

Malware 1 20/36

|

User Space Stage 1 time checking

 Time limits: 2011-08-11 Thu Aug 11 02:00:00 to
2011-08-19 Fri Aug 19 01:59:59

	Real world computer security�Információ biztonság, vírusfertőzések
	Aurora experiment
	Example: Stuxnet
	Stuxnet – Special features
	Stuxnet – PLC attack
	DPRK
	DPRK – North Korea	
	Other examples for targeted attacks
	The Duqu font vulnerability
	Duqu dropper – the idea
	Dropper structure
	Dropper font file logical structure
	Major problems, work to be done
	How to perform
	Decompressor in Duqu dropper
	Duqu dropper compression
	Duqu dropper LZMA verified
	Further steps
	Dropper time limit
	Demo
	User Space Stage 1 time checking

